
General Description

The LTC2467 is a dual independent ultra-low RON DPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The LTC2467 can handle a balanced microphone /speaker /ring-tone generator in a mono phone mode. The device contains a break-make feature.

Features

- Single Supply Operation
 - 1.65 to 4.7V Vcc
 - Function Directly from Single-Cell Battery
- Guaranteed On-Resistance Maximum 0.5 Ω with 4.7 V Supply
- Maximum Breakdown Voltage: 5.0 V
- Low Static Power
- QFN3×3-16L

Applications

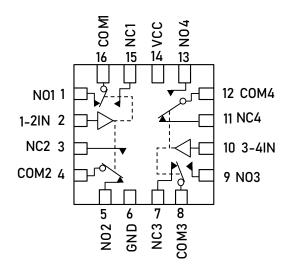
Order Information

MODEL	PACKAGE	ORDERING NUMBER
LTC2467	QFN3×3-16L	LTC2467XF16

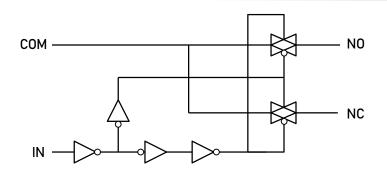
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

Pin Description


Pin #	Symbol	I/O	Pin Function
1,5,9,13,15,3,7,11	NC1 to NC4, NO1 to NO4	I/O	Independent Channels
2, 10	1–2IN, 3–4IN	I	Controls
16,4,8,12	COM1 to COM4	I/O	Common Channels
6	GND	-	Ground (V)
14	V _{cc}	-	Positive Supply Voltage

Truth Table


IN	NC	NO
Н	ON	0FF(*)
L	0FF(*)	ON

*High impedance

Block Diagram

Input Equivalent Circuit(Figure 1)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.5~+5.0	V
Analog Input Voltage (V_{N0} , V_{NC} , or V_{COM})	V _{IS}	-0.5 \sim V _{cc} +0.5	V
Digital Select Input Voltage	V _{IN}	-0.5~+5.0	V
Continuous DC Current from COM to NC/NO	l _{anl1}	±300	mA
Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	I _{anl-pk1}	±500	mA
Continuous DC Current into COM/NO/NC with respect to V_{cc} or GND	ا _{داmp}	±300	mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Defined as 10% ON, 90% off duty cycle.

Recommended Operating Conditions

Characteristic	Symbol	Min	Max	Unit
DC Supply Voltage	V _{cc}	1.65	4.7	V
Digital Select Input Voltage	V _{IN}	0	V _{cc}	V
Analog Input Voltage (NC, NO, COM)	V _{IS}	0	V _{cc}	V
Operating Temperature Range	T _A	-55	+125	°C
Input Rise or Fall Time, SELECT	t _r , t _f			ns/V
V _{CC} = 1.6 V - 2.7V			20	
V_{CC} = 3.0 V - 4.7V			10	

Recommended Operating Conditions

DC- Characteristics - Digital Section(Voltages Referenced to GND)

		Test Canditions		Guarar			
Symbol	Parameter	Test Conditions	V _{CC} ±10%	-55°Cto 25°C	<85℃	<125°C	Unit
	Minimum High-Level		1.8	1.2	1.2	1.2	
V _{IH}	-		2.5	1.5	1.5	1.5	V
			4.3	1.65	1.65	1.65	·
	Maximum Low–Level V _{II} Input Voltage, Select		1.8	0.4	0.4	0.4	
V _{IL}			2.5	0.5	0.5	0.5	V
	Inputs		4.3	1.0	1.0	1.0	
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = 5.0 V or GND	4.7	±0.1	±1.0	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.0 V or GND	0	±0.5	±2.0	± 2.0	μA
I _{cc}	Maximum Quiescent Supply Current (Note 2)	Select and V _{IS} = V _{CC} or GND	1.65 to 4.7	±1.0	±2.0	±2.5	μΑ

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

				Guaranteed Maximum Limit						
Symbol	Parameter	Test Conditions	V _{CC} ±	-55°C	to 25°C	<85	°C	<12	5℃	Unit
			10%	Min	Max	Min 1	Max	Min	Max	
	NC/NO	V _{IN} < V _{IL} or V _{IN} >V _{IH}	2.5		0.6		0.6		0.7	
R _{on}	On-Resistance	V _{IS} = GND or V _{CC}	3.0		0.5	(0.5		0.6	Ω
	(Note 2)	I _{IN} I<100 mA	4.7		0.5	(0.5		0.5	
R _{FLAT}	NC/NO		2.5		0.15	(0.15		0.15	
	On-Resistance I _{COM} = 100 mA	3.0		0.15	(0.15		0.15	Ω	
	Flatness (Notes 2, 4)	13	4.7		0.15	(0.15		0.15	32
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	15	2.5		0.06	C	0.06		0.06	
$\Delta_{\rm RON}$		V _{IS} = 1.5 V, I _{COM} = 100 mA ; V _{IS} = 2.8 V,	3.0		0.05	C).05		0.05	Ω
			4.7		0.05	C).05		0.05	
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 2)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{ V}$ $V_{COM} = 3.7 \text{ V}$	4.7	-5.0	5.0	-10	10	-100	100	nA
I _{сом(оn)}	COM ON Leakage Current (Note 2)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO}=0.8V \text{ or } 3.7V$ with V_{NC} floating or $V_{NC}=0.8 V \text{ or } 3.7 V$ with V_{NO} floating $V_{COM} = 0.8V \text{ or } 3.7V$	4.7	-10	10	-100 1	100	-1000	1000	nA

DC- Electrical Characteristics – Analog Section

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

3. ΔR_{oN} = $R_{oN(MAX)}$ – $R_{oN(MIN)}$ between NC1 and NC2 or between NO1 and NO2.

4. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC Electrical Characteristics(Input t,=t,=3.0ns)

Symbol	Parameter Test Conditions			Guaranteed Maximum Limit								
		Test Conditions	V _{cc} (V)	V _{IS} (V)	-55℃to 25℃		<85°C		<125°C		Unit	
			(*)		Min	Тур*	Max	Min	Max	Min	Max	
t _{on}	Turn-On Time	$R_L = 50\Omega$, $C_L = 35 pF$, (Figures 3 and 4)	2.3~4.7	1.5			50		60		60	ns
t _{off}	Turn-Off Time	$R_L = 50\Omega$, $C_L = 35 pF$, (Figures 3 and 4)	2.3~4.7	1.5			50		40		40	ns
t _{BBM}	Minimum Break-Befor e-Make Time	V _{IS} =3.0 R _L =300Ω, C _L =35 pF(Figure 2)	3.0	1.5	2	15						ns

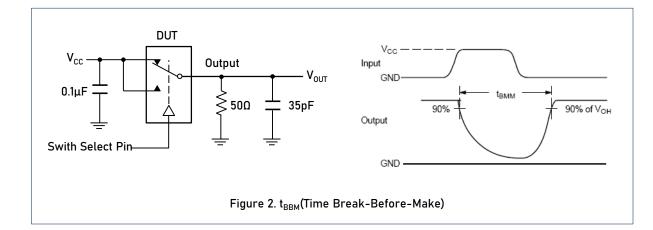
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

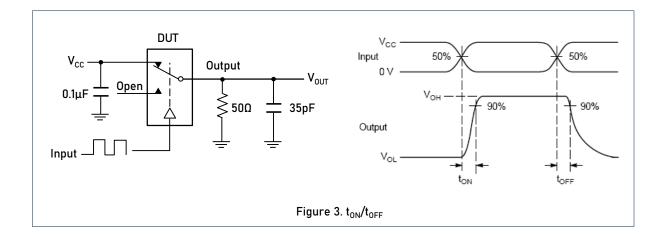
Linearin and designs are registered trademarks of Linearin Technology Corporation.

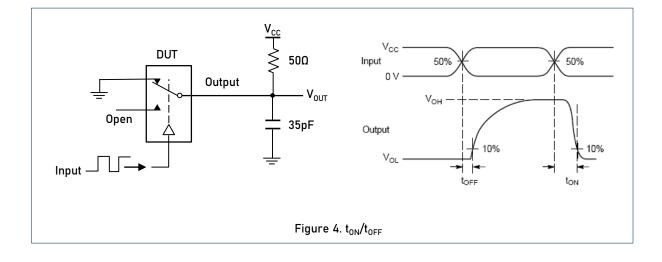
© Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

*Typical Characteristics are at 25°C

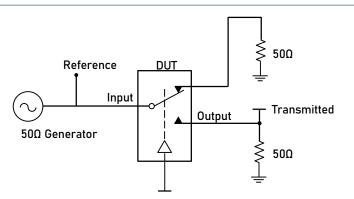
		Typical @25°C,V _{cc} =5.0V	
C _{IN}	Control Pin Input Capacitance	2.5	pF
C _{SN}	SN Port Capacitance	72	pF
C _D	D Port Capacitance When Switch is Enabled	230	pF


Additional Application Characteristics


(Voltages Referenced to GND Unless Noted)

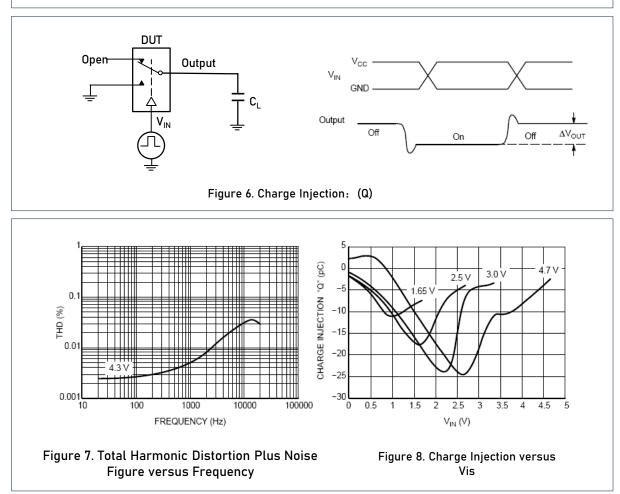

Symbol	Parameter	Condition	V _{cc} (V)	25℃ Typical	Unit
BW	Maximum On–Channel –3dB Bandwidth or Minimum Frequency Response (Figure 12)	V _{IN} centered between VCC and GND (Figure 5)	1.65~4.7	50	MHz
V _{onl}	Maximum Feed-through On Loss	V _{IN} = 0 dBm @ 100 kHz to 50 MHz V _{IN} centered between V _{CC} and GND (Figure 5)	1.65~4.7	-0.06	dB
V _{ISO}	Off–Channel Isolation (Figure 13)	f = 100 kHz; V _{IS} = 1 V RMS; C _L = 5nF V _{IN} centered between V _{CC} and GND(Figure5)	1.65~4.7	-62	dB
Q	Charge Injection Select Input to Common I/O (Figure 8)	$V_{IN} = V_{CC}$ to GND, $R_{IS} = 0\Omega$, $C_L = 1 nF$ Q = $CL \times \Delta V_{OUT}$ (Figure 6)	1.65~4.7	50	pC
THD	Total Harmonic Distortion THD + Noise (Figure 7)	F_{IS} = 20 Hz to 20 kHz, R_L = Rgen = 600 $\Omega,$ C_L = 50 pF V_{IS} = 2 VRMS	4.3	0.01	%
VCT	Channel-to-Channel Crosstalk	f=100kHz; V _{IS} = 1V RMS, C _L =5 pF, R _L =50 Ω V _{IN} centered between V _{cc} and GND (Figure 5)	1.65~4.7	-62	dB

5. Off-Channel Isolation = 20log10 (Vcom/Vno), Vcom = output, Vno = input to off switch.



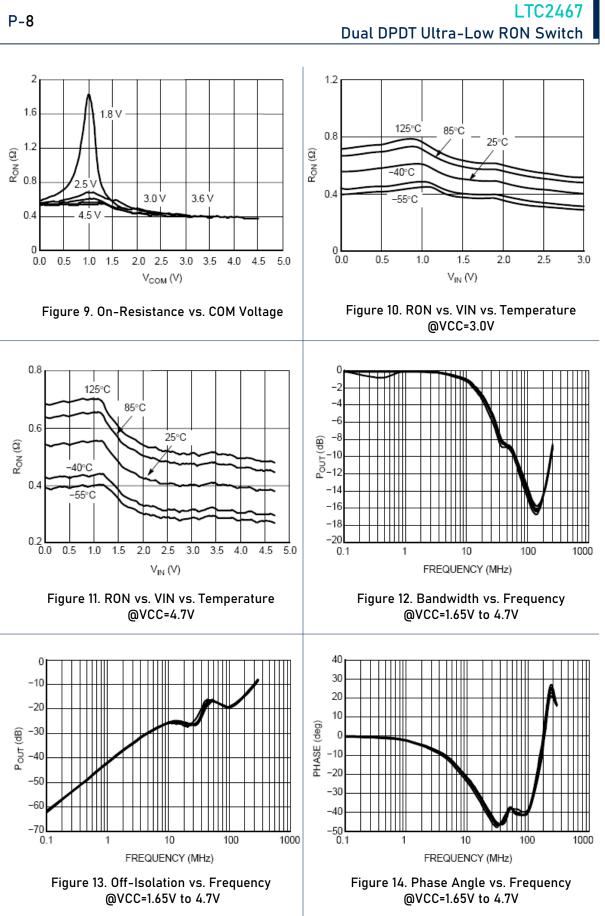
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

LTC2467 Dual DPDT Ultra-Low RON Switch



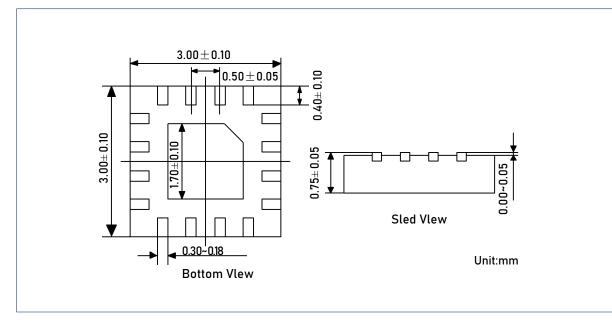
Channel switch control/s test socket is nomalized. Off isolation is measured across an off channel.On loss is the bandwidth of an On switch. $V_{\rm ISO}$, Bandwidth and $V_{\rm ONL}$ are independent of the input signal direction.

$$\begin{array}{l} V_{\rm IOS} = {\rm Off\ Channel\ Isolation} = {\rm 20\ Log} \left(\begin{array}{c} V_{\rm OUT} \\ \hline V_{\rm IN} \end{array} \right) \ \ {\rm for\ V_{\rm IN}\ at\ 100\ kHz} \\ V_{\rm ONL} = {\rm Off\ Channel\ loss} = {\rm 20\ Log} \left(\begin{array}{c} V_{\rm OUT} \\ \hline V_{\rm IN} \end{array} \right) \ \ {\rm for\ V_{\rm IN}\ at\ 100\ kHz\ to\ 50MHz} \end{array}$$


Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{IOS} setup and test to all other switch analog input/outputs terminated with 50 Q

> Figure 5. Off Channel Isolation/On Channel Loss(BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.


İNEARIN

CAUTION: These devices are sensitive to electrostatic discharge: follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

Package Dimension

QFN3×3-16

