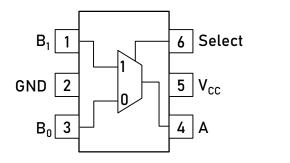
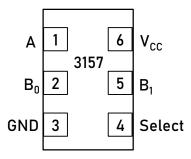
General Description


The LTC3157 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).


The Select pin has over voltage protection that allows voltages above V_{CC} , up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

Features

- Low power dissipation: 1uA
- High bandwidth: 350MHz
- Standard CMOS logic levels
- High speed with improved linearity
- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- Suitable for Clock Switching, Data Mux'ing, etc.
- Low Rds(ON)
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- Operating temperature -55°C~ +125°C
- Available packages: SC70-6, DFN-6

Pin Configuration

TOP VIEW

Order Information

Model	Package	Ordering Number	MARKING
LTC3157	SC70-6	LTC3157XC6	3157
	DFN-6	LTC3157XF6	3157

Pin Function

Pin	1/0	Pin Function
A, B ₀ , B ₁	1/0	Data port
Select	I	Controlling choice
V _{cc}	_	Power supply port
GND	_	Ground

Functions Description

Select input port	Pin Function
L	B ₀ Connected to A
Н	B ₁ Connected to A

Absolute Maximum Ratings

Aboutate Maximum Itatings			
Characteristic	Symbol	Value	Unit
Supply Voltage	V_{cc}	-0.5 ~ + 7.0	٧
DC Switch Voltage (Note 1)	V_{S}	-0.5 ~ VCC+0.5	V
DC Input Voltage (Note 1)	V_{IN}	-0.5 ~ + 7.0	V
DC Input Diode Current @V _{IN} <0V	I _{IK}	-50	mA
DC Output Current	lout	128	mA
DC V _{CC} or Ground Current	$I_{\rm CC} / I_{\rm GND}$	100	mA
Storage Temperature Range	Tstg	-65 ~ + 150	°C
Junction Temperature Under Bias	T	150	°C
Junction Lead Temperature (Soldering, 10 Seconds)	TL	260	°C
Power Dissipation @ +85°C	P_{D}	180	mW

Maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The data sheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Don't recommend operation outside data sheet specifications.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed

Absolute Maximum Ratings

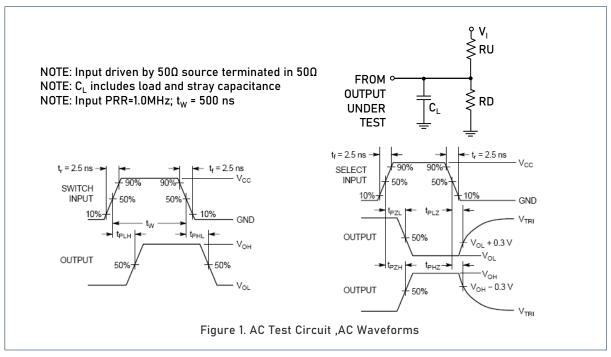
Characteristic	Symbol	Min	Max	Unit
Supply Voltage Operating	V _{CC}	1.65	5.5	V
Select Input Voltage	V_{IN}	0	V _{CC}	V
Switch Input Voltage	V_{IN}	0	V _{CC}	V
Output Voltage	V_{OUT}	0	V _{CC}	V
Operating Temperature	T_A	-55	+125	°C
Input Rise and Fall Time t_r , t_f				ns/V
Control Input V_{CC} = 2.3 V-3.6 V		0	10	
Control Input V _{CC} = 4.5 V-5.5 V		0	5.0	

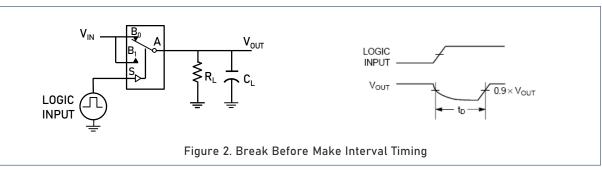
2. Select input must be held HIGH or LOW, it must not float.

Block Diagram

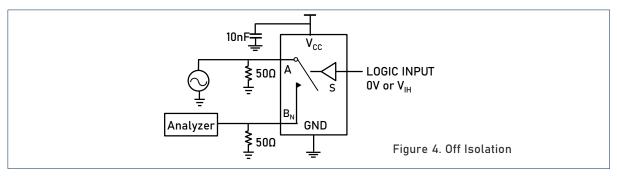
Symbol	Parameter	Test Conditions	V		T _A =25 °C		T _A =-40 °	C ~ +85°C	Unit	
Syllibot	r al allietei	rest Conditions	V _{cc}	Min	Тур	Max	Min	Max	Ullit	
DC ELE	CTRICAL CHARACT	<i>TERISTICS</i>								
			1.65-1.95				0.75V _{cc}			
V_{IH}	HIGH Level Input		2.3-2.8				1.5		. V	
* IH	Voltage		3-4.2				2.4			
			4.5-5.5				0.6 V _{CC}			
	LOW Level Input		1.65-1.95					0.25V _{CC}		
V_{IL}	Voltage		2.3-2.8					0.4	. V	
			3-5.5					0.3 V _{CC}		
I _{IN}	Input Leakage Current	0< V _{IN} <5.5V	0-5.5		±0.05	± 0.1		±1	uA	
I _{OFF}	OFF State Leakage Curret	0< A,B< V _{CC}	1.65-5.5		± 0.05	\pm 0.1		±1	uA	
I _{cc}	Quiescent Supply	$V_{\rm IN}$ = $V_{\rm CC}$ or GND $I_{\rm OUT}$ = 0	5.5			1.0		10	uA	
	Analog Signal Range		V _{cc}	0		V _{cc}	0	V _{cc}	V	
	Switch On Resistance (Note 3)	V _{IN} =0V, I ₀ =30mA	- 4.5 -		3.0			7.0	Ω	
		V _{IN} =2.4V, I ₀ =-30mA			5.0			12	Ω	
		V _{IN} =4.5V, I ₀ =-30mA			7.0			15	Ω	
		V _{IN} =0V, I ₀ =24mA			4.0			9.0	Ω	
R _{on}		V _{IN} =3V I ₀ =-24mA	- 3.0		10			20	Ω	
	•	V _{IN} =0V, I ₀ =8mA			5.0			12	Ω	
	·	V _{IN} =2.3V, I ₀ =-8mA	2.3		13			30	Ω	
		V _{IN} =0V, I ₀ =4mA	_ 1.65		6.5			20	Ω	
		V _{IN} =1.65V, I ₀ =-4mA			17			50	Ω	
R _{RANGE}	On Resistance Over Signal Range(Note	I_A =-30mA 0 \leq V _{Bn} \leq V _{CC}	4.5					25	Ω	
		I _A =-24mA	3					50	Ω	

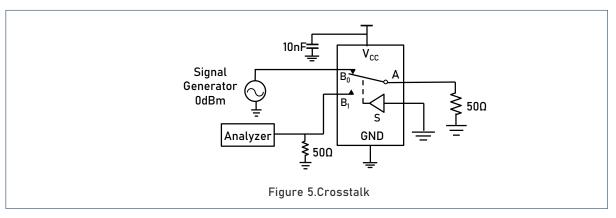
		$0 \le V_{Bn} \le_{VCC}$						
	3) (Note 7)	I_A =-8mA 0 \leq V _{Bn} \leq V _{CC}	2.3				100	Ω
		I _A =-4mA 0≤V _{Bn} ≤V _{CC}	1.65				300	Ω
	On Resistance	I _A =-30mA V _{Bn} = 3.15	4.5	0.15				Ω
. DON	Match Between	I _A =-24mA V _{Bn} = 2.1	3	0.2				Ω
ΔRON	Channels (Note 3) (Note 4)	I _A =-8mA V _{Bn} = 1.6	2.3	0.5				Ω
	(Note 5)	I _A =-4mA V _{Bn} = 1.15	1.65	0.5				Ω
		$I_A=-30mA$ $0 \le V_{Bn} \le V_{CC}$	5	6.0				Ω
D	On Resistance Flatness (Note 3) (Note 4) (Note 6)	I _A =-24mA 0≤V _{Bn} ≤V _{CC}	3.3	12				Ω
R _{FLAT}		I _A =-8mA 0≤V _{Bn} ≤V _{CC}	2.5	28				Ω
		I _A =-4mA 0≤V _{Bn} ≤V _{CC}	1.8	125				Ω
AC ELEC	CTRICAL CHARACTE	RISTICS						
	Propagation	Figure 1 V _i =0PEN	1.65-1.95					nS
t _{PHL}			2.3-2.7				1.2	nS
t_{PLH}	Delay Bus to Bus (Note 8)		3.0-3.5				0.8	nS
			4.5-5.5				0.3	nS
	Output Epoblo	utput Enable Figure 1	1.65-1.95		23	7.0	24	nS
t _{PZL}	Time ,		2.3-2.7		13	3.5	14	nS
t _{PZH}	Turn On Time	V_I =2* V_{CC} for t_{PZL} V_I =0V for t_{PZH}	3.0-3.5		6.9	2.5	7.6	nS
	(A to Bn)	TI TTTT PZH	4.5-5.5		5.2	1.7	5.7	nS
			1.65-1.95		12.5	3.0	13	nS
	Output Disable Time,	Figure 1 $V_{l}=2*V_{CC}$ for t_{PLZ} $V_{l}=0$ For t_{PHZ}	2.3-2.7		7.0	2.0	7.5	nS
t _{PLZ}	Turn Off Time (A Port to B Port)		3.0-3.5		5.0	1.5	5.3	nS
t _{PHZ}			4.5-5.5		3.5	0.8	3.8	nS
			1.65-1.95			0.5		nS
	Break Before		2.3-2.7			0.5		nS
t _{B-M}	Make Time (Note 7)		3.0-3.5			0.5		nS

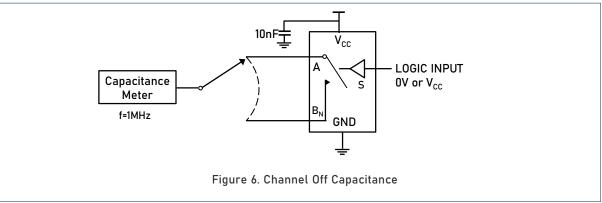


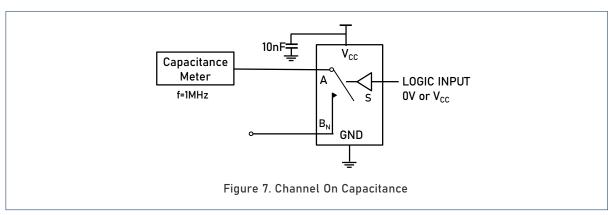

2:1 Multiplexer

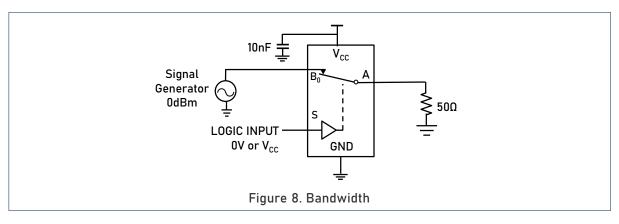
	Charge	Figure 3, C ₁ =0.1nF	5.0	7.0	рC
Q	Injection (Note 7)	$V_{GEN} = 0$ $V_{GEN} = 0$	3.3	3.0	рC
OIRR	Off Isolation (Note 9)	Figure 4, R _L =50Ω f= 10MHz	1.65-5.5	-57	dB
Xtalk	Crosstalk	Figure 5 R _L =50Ω f= 10MHz	1.65-5.5	-54	dB
BW	−3 dB Bandwidth	Figure 8,R _L =50Ω	1.65-5.5	350M	Hz
THD	Total Harmonic Distortion (Note 7)	R _L =600Ω,0.5V _{P-P} f=600Hz-20k Hz	5.0	0.011	%
C _{IN}	Select Pin Input Capacitance (Note 10)		0	2.3	pF
C _{10-B}	B Port Off Capacitance (Note 10)	Figure 6	5.0	5.0	pF
C _{IOA-ON}	A Port Capacitance when Switch is Enabled (Note 10)	Figure 7	5.0	15.5	pF


- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
- 4. Parameter is characterized but not tested in production.
- 5. ΔR_{ON} = R_{ON} max R_{ON} min measured at identical V_{CC} , temperature and voltage levels.
- 6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
- 7. Guaranteed by Design.
- 8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
- 9. Off Isolation = 20 log10 $[V_A/V_{Bn}]$.
- 10. T_A = +25 °C, f = 1 MHz, Capacitance is characterized but not tested in production.

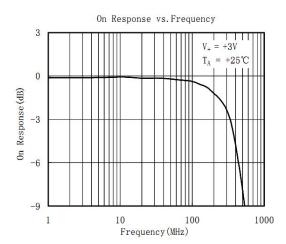


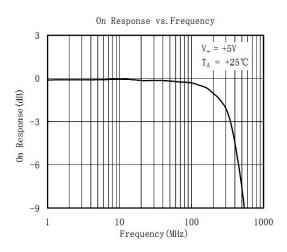


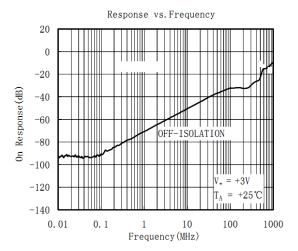


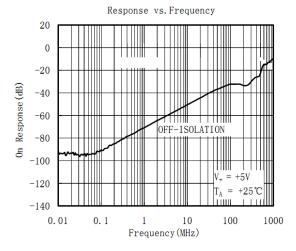


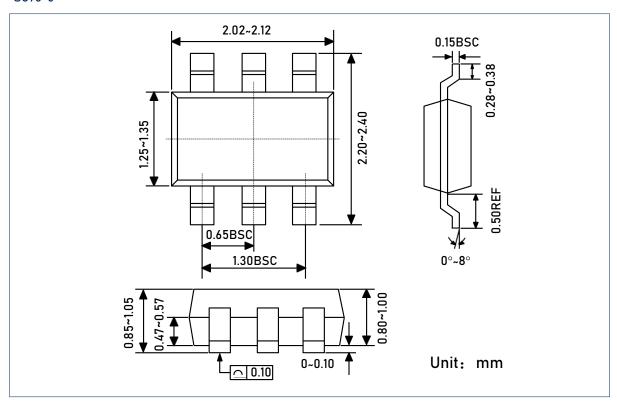
LTC3157

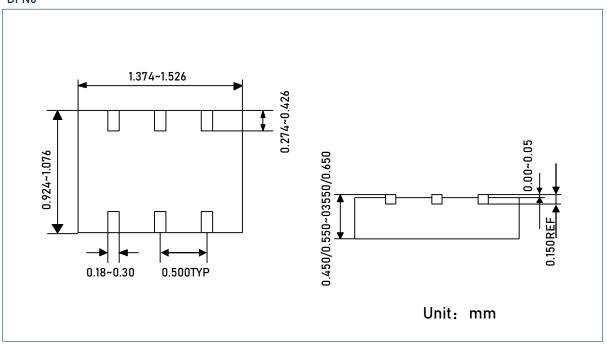












Package Dimension

SC70-6

DFN6

