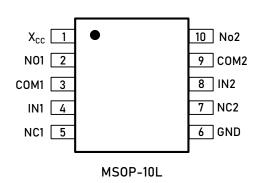

DESCRIPTION


The LTC5223 is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The part also features guaranteed Break Before Make (BBM) switching, assuring the switches never short the driver.

FEATURES

- Ultra-Low Ron : 0.55 Ω Maximum at Vcc = 4.3 V
- Wide Supply Voltage Range: Single 1.65 V to 5.5 V
- Low Crosstalk
- Full 0 ~ Vcc Signal Handling Capability
- High Off Channel Isolation
- Low Standby Current: 50 nA Maximum
- Low Distortion
- RON Flatness: 0.15 Ω
- High Continuous Current Capability: ±300 mA Through Each Switch
- Suitable for Audio Block Switching, Ring-Tone Chips, Amplifier Switching, and Modems, etc.
- ESD : Human Body Model > 4 kV (Reference Document: MIL-STD-883H Method 3015.8)
- Available Packages: QFN1.8×1.4-10L, DFN3x3-10L, and MSOP-10L

PIN CONFIGURATION (Top View)

ORDER INFORMATION

Model	Package	Ordering Number	Packing Option
	QFN1.8×1.4-10L	LTC5223YFS10	Tape and Reel, 3 000
LTC5223	DFN3×3-10L	LTC5223YF10	Tape and Reel, 3 000
	MSOP-10L	LTC5223YV10	Tape and Reel, 4 000

PIN DESCRIPTIONS

Pin	Symbol	Description	
1	V _{cc}	Power Supply	
2	N01	Independent Channels	
3	СОМ1	Common Channels	
4	IN1	Controls	
5	NC1	Independent Channels	
6	GND	Ground (V)	
7	NC2	Independent Channels	
8	IN2	Controls	
9	COM2	Common Channels	
10	N02	Independent Channels	

TRUTH TABLE

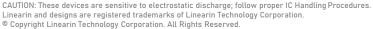
0 0FF 0N	
1 ON OFF	

RECOMMENDED OPERATING CONDITIONS

Characteristic		Symbol	Min	Max	Unit
DC Supply Voltag		V _{cc}	1.65	5.5	V
Digital Select Input Voltage	e	V _{IN}	GND	5.5	V
Analog Input Voltage		V _{IS}	GND	V _{cc}	V
Operating Temperature Range		T _A	-45	+85	°C
Input Rise or Fall Time	V _{CC} = 1.6 V to 2.7 V		0	20	
SELECT	V _{cc} = 3.0 V to 5.5 V	— t _R , t _F	0	10	ns/V

ABSOLUTE MAXIIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.5 to 6.0	V
Analog Input Voltage	V _{IS}	-0.5 to V _{cc} + 0.5	V
Digital Select Input Voltage	V _{IN}	-0.5 to 6.0	V
Output Voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Continuous DC Current from COM to NC/NO	lan1	±300	mA
Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	lan1-pk1	±500	mA
Continuous DC Current into COM/NO/NC with respect to V_{CC} or GND	lclmp	±100	mA


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1. Defined as 10% ON, 90% off duty cycle.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Lineaein recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Linearin reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Linearin sales office to get the latest data sheet.

All other trademarks mentioned are the property of their respective owners.

ELECTRICAL CHARACTERISTICS (DC)

Symbol	Parameter	Test Conditions	V _{cc} ± 10%	Т	_A = 25°	с	T _A = - to +8		
, 				Min	Тур	Max	Min	Max	Unit
			1.65 ~ 1.95	1.1			1.1		
			2.3 ~ 2.5	1.2			1.2		
V _{IH}	High-Level Input Voltage,		2.7 ~ 3.0	1.3			1.3		v
	Select Inputs		3.0 ~ 3.6	1.4			1.4		
			4.3	1.5			1.5		
			1.65 ~ 1.95			0.25		0.25	
			2.3 ~ 2.5			0.25		0.25	
V _{IL}	Low-Level Input Voltage,		2.7 ~ 3.0			0.25		0.25	v
	Select Inputs		3.0 ~ 3.6			0.30		0.30	
			4.3			0.40		0.40	
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} =V _{CC} or GND	4.3			±0.1		±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} =V _{CC} or GND	0			±0.5		±2.0	μA
I _{cc}	Maximum Quiescent Supply Current (Note 2)	Select, V _{IS} = V _{CC} or GND	1.65 ~ 4.3			±1.0		±2.0	μA
I _{NO (OFF)} I _{NC (OFF)}	NC or NO Off Leakage Current	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO} \text{ or } V_{NC} = 0.3 \text{ V}$ $V_{COM} = 4.0 \text{ V}$	4.3	-5.0		5.0	-10	10	nA
	COM ON Leakage Current	(Note 3)							
I _{сом (оn)}	V_{IN} = V_{IL} or V_{IH} , V_{NO} = 0.3 V or V_{NC} floating V_{NC} = 0.3 V or V_{NO} floating V_{COM} = 0.3 V or	4.0 V	4.3	-10		10	-100	100	nA
			4.3		0.45	0.5		0.55	
	•		3.6		0.5	0.55		0.65	
R _{on}	On- Resistance	V_{IS} = GND to V_{CC} ,	3.0		0.5	0.55		0.65	Ω
· UN	(Note 3)	l _{IN} = 100 mA	2.7		0.6	0.7		0.8	
			2.3		0.6	0.7		0.8	
			1.8		0.9	1.0		1.1	
			4.3		0.15	0.20		0.20	
			3.6		0.15	0.20		0.20	
R_{FLAT}	On–Resistance Flatness (Note 3) (Note 5)	I _{COM} = 100 mA V _{IS} = 1.5 V	3.0		0.15	0.20		0.20	- Ω
	(2.3		0.20	0.25		0.25	
			1.8		0.35	0.45		0.45	
ΔR _{on}	On-Resistance Match Between Channels (Note 3) (Note 4)	I _{COM} = 100 mA V _{IS} = 1.5 V	2.7		0.1				Ω

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

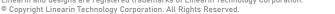
© Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

ELECTRICAL CHARACTERISTICS (AC)

Complexed	Denementen	Test Osmalliliana	V/ 10%		T _A = 25°C		
Symbol	Parameter	Test Conditions	V _{cc} ± 10%	Min	Тур	Max	Unit
			1.65 ~ 1.95		0.30		
tPLH			2.3 ~ 2.7		0.25		-
tPHL Pro	Propagation Delay		3.0 ~ 3.3		0.20		- ns
			3.6 ~ 5		0.20		-
		V _{IS} = 0.8 V	1.65 ~ 1.95		120		
	Turn-On Time		2.3 ~ 2.7		65	85	-
tON	(Figure 1)	– V _{IS} = 1.5 V	3.0 ~ 3.3		42	55	- ns
		15	3.6 ~ 4.3		40	55	-
		V _{IS} = 0.8 V	1.65 ~ 1.95		45		
			2.3 ~ 2.7		18	30	- ns
tOFF	Turn-Off Time	V _{IS} = 1.5 V	3.0 ~ 3.3		16	30	-
	(Figure 1)	15	3.6 ~ 4.3		15	30	
			1.65 ~ 1.95	2	17		
	Break-Before-MakeTime	C _L = 35 pF R _{IS} = 50 Ω V _{IS} = 1.5 V	2.3 ~ 2.7	2	10		— ns —
tBBM	(Note6)(Figure 2)		3.0 ~ 3.3	2	8		
			3.6 ~ 4.3	2	7		
BW	On-Channel, -3 dB Bandwi Response (Figure 4)	dth or Frequency	1.65 ~ 4.3		18		MHz
	R _{IS} = 50 Ω						
	Off-Channel Isolation (Figu		_				
V _{ISO}	F_{IS} = 100 kHz, V _{IN} = GND to V R _L = 50 Ω, V _{IS} = 1V _{RMS}	V _{cc} , C _L = 5 pF	1.65 ~ 4.3		-66		dB
	Charge Injection Select Inp (Figure 3)	out to Common I/O	1.65 ~ 1.95		43		_
Q	(i igui e 5)		2.3 ~ 2.7		51		рС
	V_{IN} = 0 or V_{CC} , R_{IS} = 0 Ω , C_L =	= 100 pF	3.0 ~ 3.3		51		_
	R_L = 1 m Ω , Q = $C_L \times \Delta V_{OUT}$		3.6 ~ 4.3		49		
	Total Harmonic Distortion	THD +Noise	_				
THD	F _{IS} = 20 Hz to 20 kHz, R _L = 6 C _L = 50 pF V _{IS} = 2 VRMS	500 Ω	3.0		0.08		%
	Channel - to - Channel Cro	sstalk (Figure 4)					
V _{CT}	F_{IS} = 100 kHz, V _{IN} = GND to V _{CC} R _L = 50 Ω, C _L = 5 pF, V _{IS} = 1 VRMS		1.65 ~ 4.3		-72		dB
CIN	Control Pin Input Capacitance		3.6		3.5		pF
C _{CN} /C _{NO}	NC/NO Port Capacitance		3.6		60		pF
C _{COM}	COM Port Capacitance When Switch is Enabled		3.6		200		pF

Note:


2. Guaranteed by design.

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

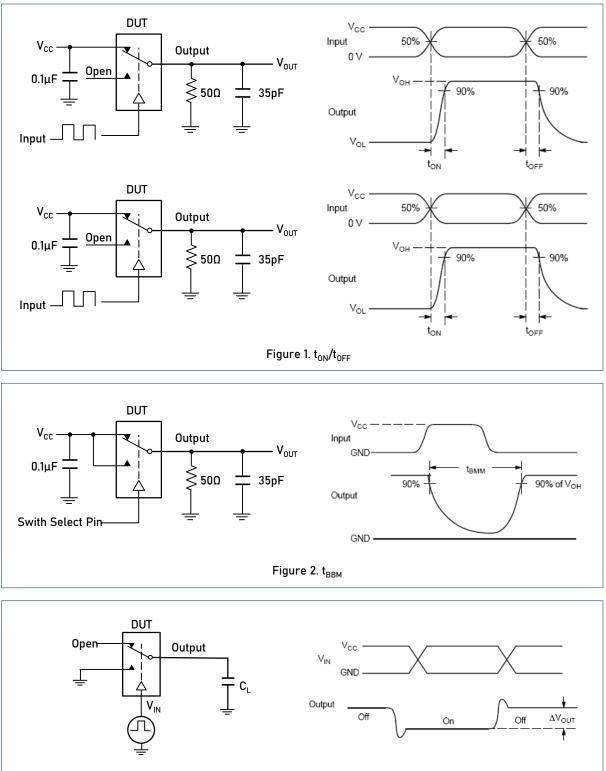
4. ΔR_{ON} = $R_{\text{ON (MAX)}}$ – $R_{\text{ON (MIN)}}$ between NC1 and NC2 or between NO1 and NO2.

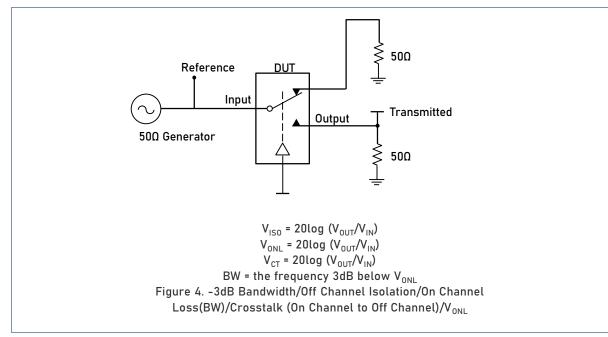
5. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

6. Guaranteed by design in -40°C.

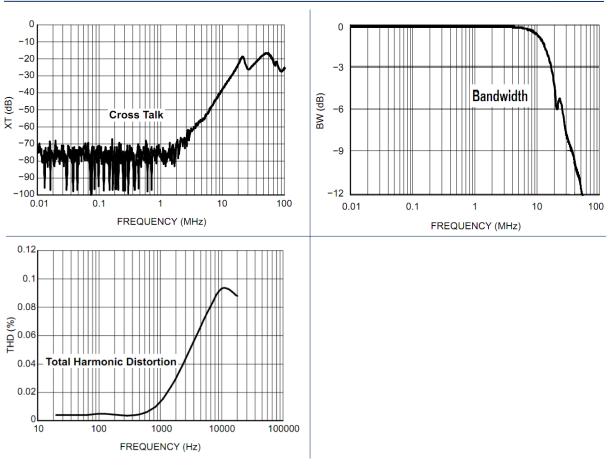
LTC5223 Ultra-Low 0.5Ω Dual SPDT Analog Switch

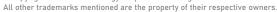
TEST CIRCUITS



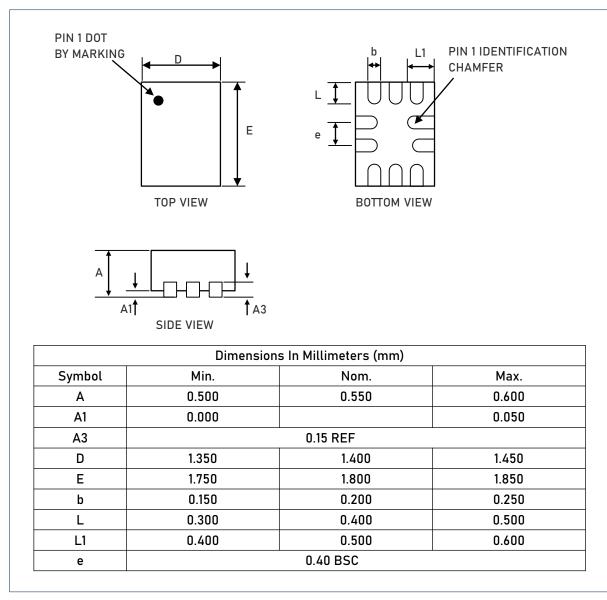

Figure3: Charge Injection

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

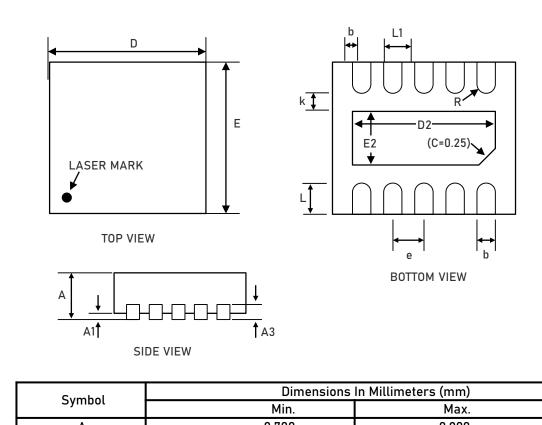



TEST CIRCUITS (Cont.)

TEST CIRCUITS (Cont.)


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

PACKAGE OUTLINE

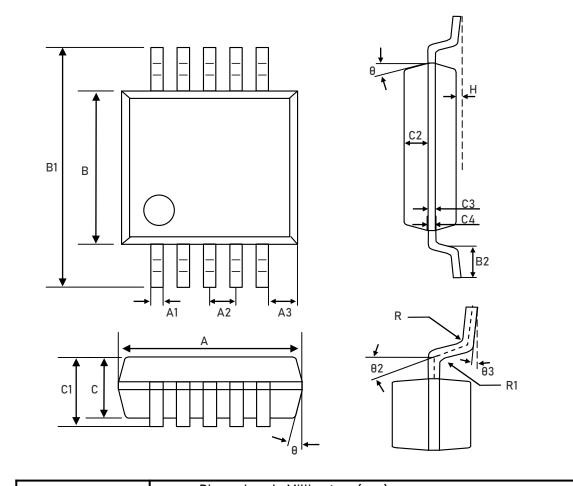

QFN1.8×1.4-10L

PACKAGE OUTLINE

DFN3×3-10L

Cymhol L		
Symbol	Min.	Max.
A	0.700	0.800
A1	0.000	0.050
A3	0.203R	EF
b	0.180	0.300
D	2.900	3.100
D2	2.450	2.550
e	0.400	0.600
E	2.900	3.100
E2	1.450	1.650
L	0.350	0.450
k	0.150	
R	0.090	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.



<u>İ</u>NEARIN

PACKAGE OUTLINE

MSOP-10L

P-10

Symbol	Dimensions In Millimeters (mm)	
Symbol	Min.	Max.
А	2.900	3.100
A1	0.190	0.280
A2	0.500 TYP	
A3	0.400 TYP	
В	2.900	3.100
B1	4.700	5.100
B2	0.450	0.750
С	0.750	0.950
C1		1.100
C2	0.328 TYP	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

