General Description

The LTP3465 family are the 500 mA LDO with auto discharge function, It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR), low noise, low dropout, low ground current, fast start-up and excellent output accuracy.

The LTP3465 family are stable with a $1.0\mu F$ ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent regulation and transient response.

The LTP3465 family offered in a small SOT23-5 and DFN1 \times 1-4 package, which are ideal for small form factor portable equipment.

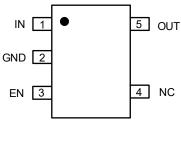
The LTP3465 family are available in standard fixed output voltages of 1.2 V, 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V.

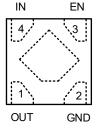
Features and Benefits

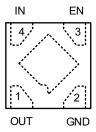
- Wide Input Voltage Range from 1.6 V to 5.5 V
- Up to 500 mA Load Current
- Standard Fixed Output Voltage Options: 1.2 V, 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V and 3.3 V
- Very Low I_Q is 42 μA typical
- Low Dropout is typical 145 mV at 2.8 V and 300 mA Load
- Very High PSRR: 75 dB at 1 kHz
- Very Low Noise is 20 μV_{RMS} at 1.2 V output
- Excellent Load/Line Transient Response
- Package: S0T23-5, DFN1×1-4

Applications

- Smart Phones and Cellular Phones
- Digital Still Cameras
- Portable instruments

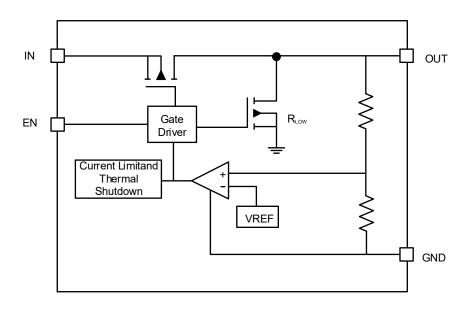



Ordering Information


Model Note1	Package Name	Type Number ^{Notel}	Packing Quantity
LTP3465	S0T23-5	LTP3465-xxNYT5	Tape and Reel, 3 000
211 0400	DFN1×1-4	LTP3465-xxNYF4	Tape and Reel, 10 000

Note1: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8 V; if xx = 30, the output voltage is 3.0 V. The device with suffix "N" is shutdown version with enable control input.

Pin Configurations (Top View)


S0T23-5 DFN1×1-4

Pin Function

Pack	Package		E. w. et a. v.
S0T23-5	DFN1×1-4	Symbol	Function
1	4	IN	Supply input pin.
2	2	GND	Ground.
3	3	EN	Enable control input, active high.
4	/	NC	No Connection.
5	1	OUT	Output pin.

Block Diagram

Functional Description

Input Capacitor

A 1 μ F ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 1 μ F to 10 μ F, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $500m\Omega$, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

On/Off Input Operation

The LTP3465 is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Ultra Fast Start-up

After enabled, the LTP3465 is able to provide full power in as little as tens of microseconds, typically $50\mu s$. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Current-Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuit to GND, the current limit protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal Shutdown

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately + 130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
IN Voltage	V_{IN}	1.9	5.5	٧
Output Current	I _{out}	0	500	mA
Operating Ambient Temperature	T_A	-40	85	°C
Effective Input Ceramic Capacitor Value	C _{IN}	0.47	4.7	μF
Effective Output Ceramic Capacitor Value	C_OUT	0.47	4.7	μF
Input and Output Capacitor Equivalent Series Resistance (ESR)	ESR	5	100	mΩ

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit
IN Voltage		V_{IN}	-0.3	6.5	V
Other Pin Voltage			-0.3	V _{IN} + 0.3	V
Maximum Load Current				500	mA
Package Thermal	DFN1×1-4			180	°C/W
Resistance	S0T23-5			260	°C/W
Junction Temperature		T,		150	°C
Storage Temperature		T_{STG}	-65	150	°C
Lead Temperature(Soldering, 10 sec)		T _L		300	°C

NOTE:

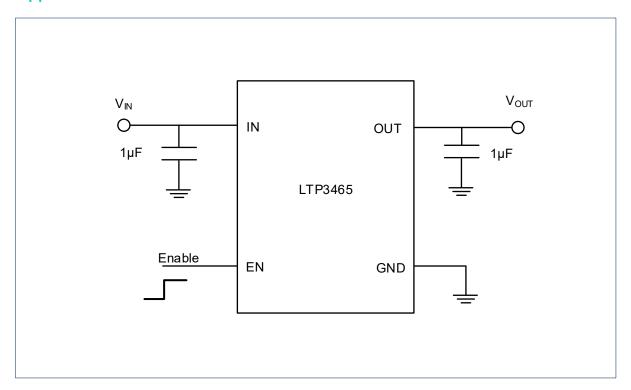
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Caution:

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. LINEARIN recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

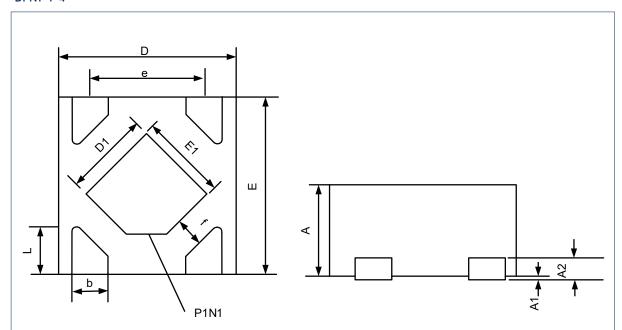
LINEARIN reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact LINEARIN sales office to get the latest datasheet.

Electrical Characteristics


 T_A = +25°C, VI_N = V_{EN} = V_{OUT} + 1 V. unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage Range	V _{IN}		1.6	'	5.5	٧	
Regulated Output Voltage	ΔV_{OUT}	I _{OUT} = 1 mA, -40°C≤ T _A ≤85°C	-2		2	%	
Line Regulation	$R_{\rm egLINE}$	V _{IN} = V _{OUT} +1 V to 5.5 V, I _{OUT} = 10 mA		0.03	0.2	%V _{out}	
Load Regulation	$R_{\rm egLOAD}$	I _{OUT} = 0 mA to 300 mA		20	40	mV	
Soft-start Time	T_{SS}	From enable to power on		50		μS	
Short Current limit	I _{SHORT}	V _{OUT} = 0 V		90		mA	
DC Supply Quiescent Current	I _{Q-ON}	Active mode: V _{EN} =V _{IN}		42	70	μΑ	
DC Supply Shutdown Current	I _{Q-OFF}	V _{EN} = 0 V		0.01	1	μΑ	
		V _{OUT} = 1.2 V, I _{OUT} = 300 mA		320	420		
		V _{OUT} = 1.5 V, I _{OUT} = 300 mA		240	340		
		V _{OUT} = 1.8 V, I _{OUT} = 300 mA		180	280	mV	
Dropout Voltage	V_{DROP}	V _{OUT} = 2.5 V, I _{OUT} = 300 mA		160	260		
		V _{OUT} = 2.8 V, I _{OUT} = 300 mA		145	240		
		V _{OUT} = 3.0 V, I _{OUT} = 300 mA		140	230		
		V _{OUT} = 3.3 V, I _{OUT} = 300 mA		135	220		
Current Limit	I _{LMT}	R _{LOAD} = 1 Ω	300			mA	
Daniera annulu maia atian matian	DCDD	f = 1 kHz, C _{OUT} = 1 μF, I _{OUT} = 20 mA		70		40	
Power supply rejection ration	PSRR	f = 10 kHz, C _{OUT} = 1 μF, I _{OUT} = 30 mA		65		dB	
Output Naine Valtera		BW = 10 Hz to 100 kHz, I_{OUT} = 200 mA, V_{OUT} = 2.8 V, C_{OUT} = 1 μF	25		μV_{RMS}		
Output Noise Voltage	e _N	BW = 10 Hz to 100 kHz, I_{OUT} = 200 mA, V_{OUT} = 1.2 V, C_{OUT} = 1 μF				M ¥ KMS	
EN Low Threshold	V_{IL}			0.3		V	
EN High Threshold	V_{IH}					V	
EN Pin Input current	I _{EN}	V _{EN} = 0 V		0	0.1	μΑ	
EN pull-down resistance	T _{TSD}			1	1.3	mΩ	
Output resistance of auto discharge at off state	RLow	E _N = 0 V, V _{IN} = 4 V		130		Ω	
Thermal shutdown threshold	T _{TSD}	T _J rising 150			°C		
Thermal shutdown hysteresis	T _{HYS}	T _J falling from shutdown		20		°C	

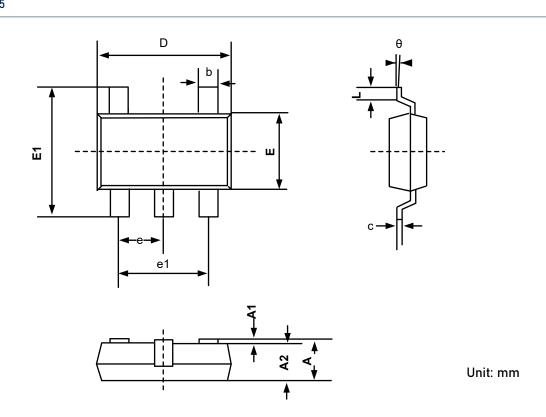
 $Note: Production\ test\ at\ +\ 25^{\circ}C.\ Specifications\ over\ the\ temperature\ range\ are\ guaranteed\ by\ design\ and\ characterization.$



Application Circuits

Package Dimension

DFN1×1-4



Unit: mm

Cymbal	Dimensions In Millimeters			
Symbol	MIN	MOD	MAX	
Α	0.450	0.500	0.550	
A1	0.000	0.025	0.050	
A2		0.125REF		
D	0.950	1.000	1.050	
D1	0.380	0.480	0.580	
E	0.950	1.000	1.050	
E1	0.380	0.480	0.580	
b	0.150	0.200	0.250	
е	0.650BSC			
f	0.190	0.195	0.200	
L	0.150	0.250	0.350	

Package Dimension

S0T23-5

Cymhol	Dimensions In Millimeters		
Symbol	MIN	MAX	
A	0.700	1.250	
A1	0.000	0.100	
A2	0.700	1.150	
b	0.350	0.500	
С	0.080	0.200	
D	2.820	3.020	
E	2.650	2.950	
E1	1.600	1.700	
e	0.950BSC		
E1	1.800	2.000	
L	0.300	0.600	
Θ	0°	8°	