150 mA, 24 V, Low I_Q , Low Dropout Regulators

LTP3565

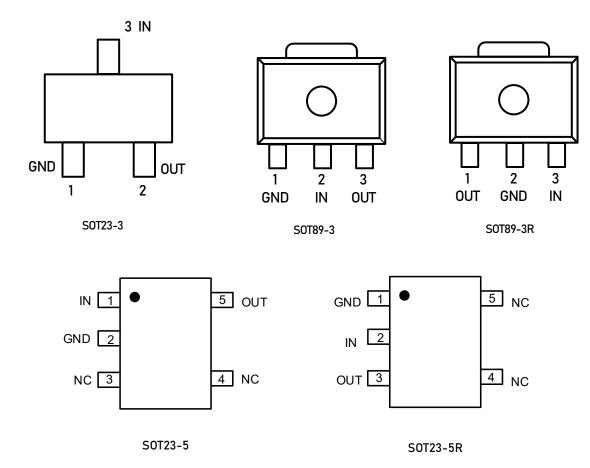
General Description

The LTP3565 is a high voltage, low power consumption and high performance LDO. The family uses an advanced CMOS process and a PMOSFET pass device to achieve fast start-up, with high output voltage accuracy. The LTP3565 is stable with a 1.0 μ F to 10 μ F ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve a worst-case accuracy of 2% over all load, line, process, and temperature variations.

Features

- Wide Input Voltage Range: up to 24 V
- Output Current: 150 mA
- Standard Fixed Output Voltage Options: 3.3 V and 5.0 V
- More Output Voltage Options Available on Request
- Low IQ : 1.5 μA Typically
- Low Dropout Voltage
- Short current protection
- Excellent Load/Line Transient Response
- Available in S0T23-3, S0T23-5, S0T-89 Packages

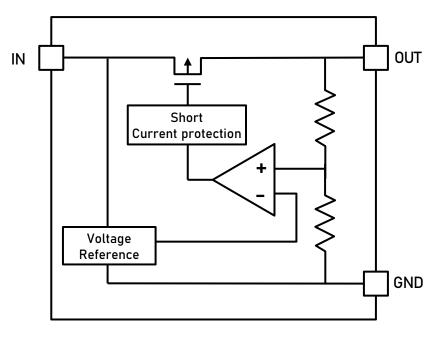
Model	Package	Ordering Number Note1	Packing Option
 LTP3565	S0T23-3	LTP3565-xxXT3	Tape and Reel, 3000
	S0T23-5	LTP3565-xxXT5	Tape and Reel, 3000
	S0T23-5R	LTP3565-xxRXT5	Tape and Reel, 3000
	S0T89-3	LTP3565-xxXT4 Tape and Reel, 1000	
	S0T89-3R	LTP3565-xxRXT4	Tape and Reel, 1000


Order Information

Note1: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8 V; if xx = 30, the output voltage is 3.0 V.

Pin Description

P-2


Pin Function

		Package	ackage			Function
S0T23-3	S0T23-5	S0T23-5R	S0T-89	SOT-89R	Symbol	Function
1	2	1	1	2	GND	Ground.
3	1	2	2	3	IN	Supply input pin. Must be closely decoupled to GND with a 1 µF or greater ceramic capacitor.
2	5	3	3	1	OUT	Output pin. Bypass a 1 µF or greater ceramic capacitor from this pin to ground.
	3,4	4,5			NC	No connection.

İNEARIN

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

Block Diagram

Functional Description

Input Capacitor

A 1 μ F-10 μ F ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 1 μ F to 10 μ F, Equivalent Series Resistance (ESR) is from 5 m Ω to 100 m Ω , and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

Low Quiescent Current

The LTP3565, consuming only around 1.5 μ A for all input range and output loading, provides great power saving in portable and low power applications.

Short Current Limit Protection

LTP3565 realizes the functions of over-current protection and short-circuit protection. It has 2-level overcurrent protection threshold. Once the output voltage is greater than 0.7 V, the overcurrent protection function will take effect and the OCP limit current will be set to 180 mA. If the output voltage is lower than 0.7 V, the short-circuit protection function takes effect, and the SCP current is set to 20 mA. Even if the output is short circuited to ground, IC damage can be prevented. When the output is short circuited to ground, the output current will be clamped to I_{SCP}.

Absolute Maximum Ratings

Parameter	Rating	Unit
IN pin to GND pin	-0.3 to 28	V
	SOT89-3 135	
Thermal Resistance (Junction to Ambient) ⁽¹⁾	S0T23-3 230	°C/W
	S0T23-5 250	-
Junction Temperature	150	°C
Storage Temperature	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C
ESD (HBM mode)	ESDA/JEDEC JS-001-2017	\pm 2000V

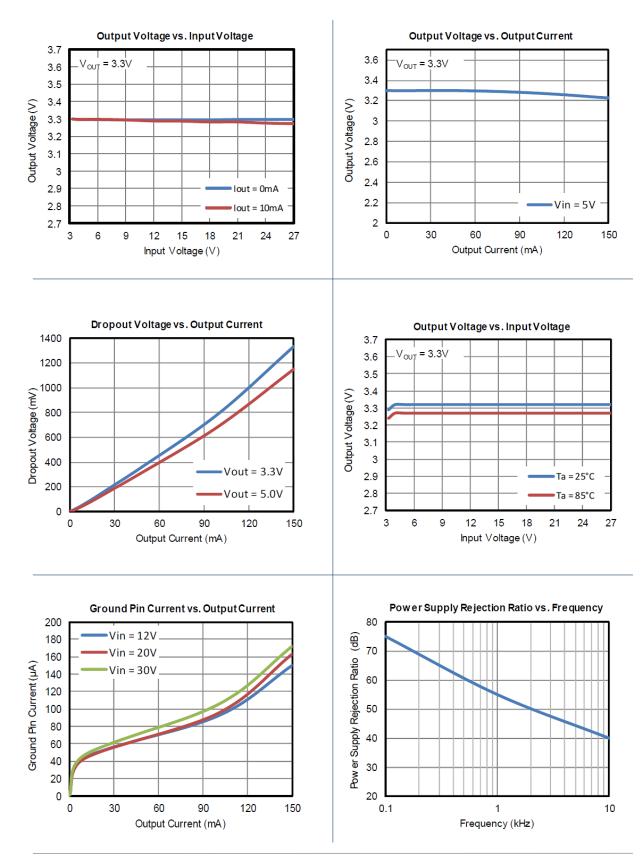
Note:

(1) This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking.

(2) Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

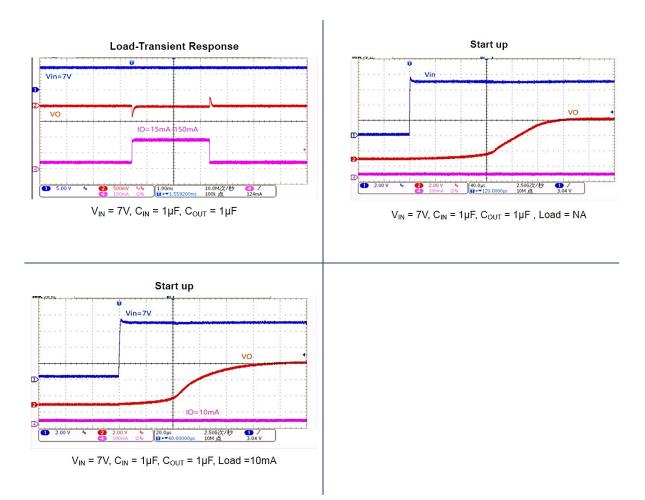
Electrical Characteristics

$T_{a}\text{=}~25\,^{\circ}\text{C}\text{,}$ unless otherwise noted.

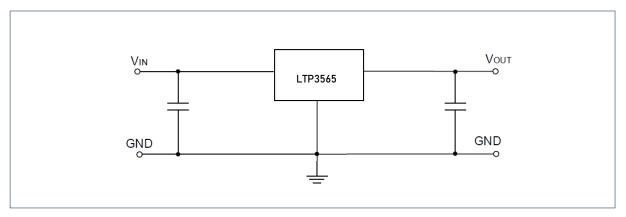

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Input Voltage Operation Range	V _{IN}					24	V
Dropout Voltage	V _{DROP}	V _{OUT} = 3.3 V, I _{OUT} ΔV _{OUT} = -2%V _{OUT}	,	300	360	420	_ mV
		V _{OUT} = 3.3 V, I _{OUT}	_r = 100 mA	600	700	800	
DC Supply Quiescent Current	Ι _Q	I _{out} = 0 mA, V _{IN} < 28 V			1.5	5	μA
Regulated Output Voltage	V _{OUT}	I _{out} = 1 mA		V _{OUT} ×0.98		$V_{OUT} \times 1.02$	V
Output Voltage Line Regulation	ΔV _{out}	V _{IN} = V _{OUT} +1 V to 24 V, I _{OUT} = 10 mA		-15		15	mV
Output Voltage Load Regulation	ΔV _{out}	V _{IN} = V _{OUT} +1.5 V to 24 V I _{OUT} from 1 mA to 100 mA		-50		50	mV
Maximum Output Current	Ι _{ουτ}	V _{IN} = V _{OUT} +1.5 V			150		mA
Deuren Cummlu Deie stien Detie	PSRR	I _{OUT} = 10 mA	f=100 Hz		75		
Power Supply Rejection Ratio			f=1 KHz		55		- dB
Short Current	I _{SHORT}	V _{OUT} = 0 V			20		mA

Linearin and designs are registered trademarks of Linearin Technology Corporation.

Typical Performance Characteristics

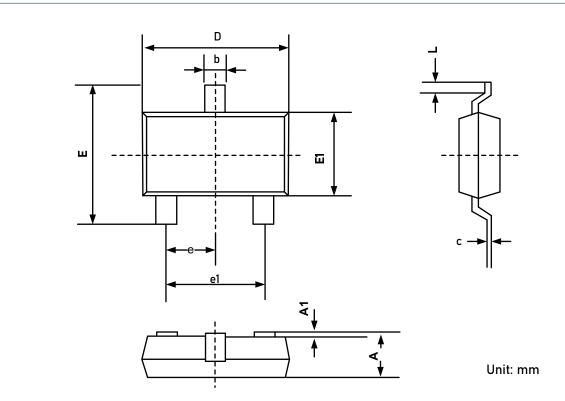


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

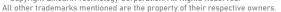

All other trademarks mentioned are the property of their respective owners.

Typical Performance Characteristics

Application Circuits

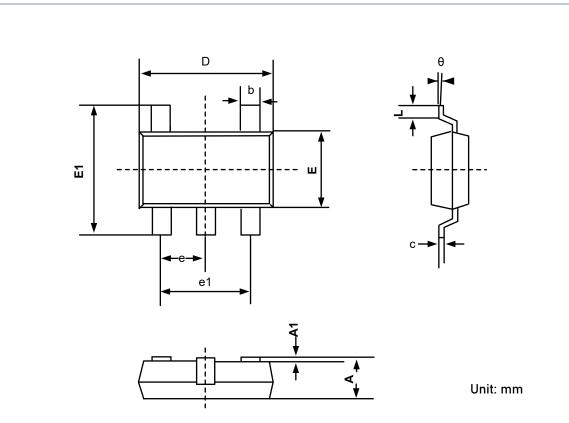


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.


Package Dimension

SOT23-3

Cumhal	Dimensions In Millimeters		
Symbol	MIN	MAX	
Α	1.050	1.250	
A1	0.000	0.100	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
E	2.650	3.020	
E1	1.500	1.700	
е	0.950BSC		
e1	1.800	2.000	
L	0.300	0.600	
θ	0 °	8 °	

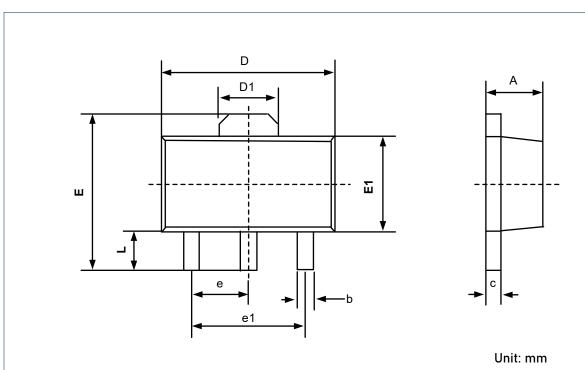

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Package Dimension

SOT23-5

P-8

Symbol	Dimensions In Millimeters			
Symbol	MIN	МАХ		
A	1.050	1.250		
A1	0.000	0.100		
b	0.350	0.500		
C	0.080	0.200		
D	2.820	3.020		
E	2.600	3.000		
E1	1.600	1.700		
e	0.950BSC			
e1	1.800	2.000		
L	0.300	0.600		
Θ	0°	8°		



Package Dimension

SOT89-3

P-9

Cumhal	Dimensions In Millimeters			
Symbol	Min	Max		
А	1.400	1.600		
b	0.320	0.520		
C	0.350	0.440		
D	4.400	4.600		
D1	1.550REF			
E	3.940 4.250			
E1	2.300 2.600			
e	1.500BSC			
e1	3.000BSC			
L	0.900 1.200			

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Convright Linearin Technology Corporation. All Rights Reserved

